Part of complete coverage on
Scientists build baseball-playing robot with 100,000-neuron fake brain
|
|
By Daniela Hernandez, Wired
April 29, 2013 -- Updated 1404 GMT (2204 HKT) | Filed under: Innovations
|
Scientists hope the baseball-playing robot will help them better understand how brains can be recreated.
STORY HIGHLIGHTS
- Japanese researchers build small humanoid robot which can play baseball
- Brain of robot mimics the function of about 100,000 neurons
- A scientist who worked on the project plans to release source code for the system
(CNN) -- If you've been to the RoboGames, you've seen everything from flame-throwing battlebots to androids that play soccer. But robo-athletes are more than just performers. They're a path to the future.
Researchers at the University of Electro-Communications in Tokyo and the Okinawa Institute of Science and Technology have built a small humanoid robot that plays baseball -- or something like it. The bot can hold a fan-like bat and take swings at flying plastic balls, and though it may miss at first, it can learn with each new pitch and adjust its swing accordingly. Eventually, it will make contact.
The robot, you see, is also equipped with an artificial brain. Based on an Nvida graphics processor, or GPU, kinda like the one that renders images on your desktop or laptop, this brain mimics the function of about 100,000 neurons, and using a software platform developed by Nvidia, the scientists have programmed these neurons for the task at hand, as they discussed in a recent paper published in the journal Neural Networks.
Working code helps other scientists to learn how to implement an artificial brain in computers
Tadashi Yamazaki
Read: 'Mantis:' the monster-sized hexapod robot
Yes, it's fun. But through this baseball-playing robot, the scientists also hope to better understand how brains can be recreated with software and hardware — and bring us closer to a world where robots can handle more important tasks on our behalf.
When a ball is pitched to the robot, an accelerometer at the back of a batting cage records information about the flight of the ball, including its speed, and this data is relayed back to a machine that holds the GPU-powered brain. The brain then crunches this data so that it can determine exactly when the robot should swing. If the scientists change the pitch speed, the robot will relearn the task all over again.
Read: 'Afterlife' feels 'even more real than real'
This is not the first time researchers have modeled a cerebellum to control robots. A team of scientists in Europe, for instance, have used an artificial cerebellum to control a robotic limb. But according to Tadashi Yamazaki, one of the scientists who worked on the project, the baseball-playing robot is the second largest model of its kind and it runs in real time, meaning its much faster than other systems. That means the GPU brain is better suited to controlling external hardware, he says.
Read: Scientists to simulate human brain
Just as he did with a previous artificial brain model, Yamazaki plans to release the source code for the system. The whole idea is to push this area of research forward. "Working code helps other scientists to learn how to implement an artificial brain in computers," he says.
Subscribe to WIRED magazine for less than $1 an issue and get a FREE GIFT! Click here!
Copyright 2011 Wired.com.
Part of complete coverage on
April 30, 2013 -- Updated 1421 GMT (2221 HKT)
Thinner than a human hair but 300 times stronger than steel? No wonder scientists are getting so excited about the "miracle material."
April 19, 2013 -- Updated 1744 GMT (0144 HKT)
Stomping through the fields and industrial wastelands of Britain, this giant six-legged walking robot is a world first, say its creators.
April 10, 2013 -- Updated 0921 GMT (1721 HKT)
"Sometimes Buddha, Jesus or Mohammed appear, but usually they don't ..." says Dr. Steven Laurays, head of the Belgian-based Coma Science Group.
April 3, 2013 -- Updated 1509 GMT (2309 HKT)
As wars become more automated, we must ask how far we want to delegate responsibility to machines, says Noel Sharkey.
March 27, 2013 -- Updated 1442 GMT (2242 HKT)
U.S. physicists have created a way of making objects "invisible." It's not Harry Potter's invisibility cloak just yet, but scientists say it has potential.
March 12, 2013 -- Updated 1340 GMT (2140 HKT)
We need to innovate alternative energy sources now more than ever, says Steven Cowley. Fusion energy could be the answer, he thinks.
March 6, 2013 -- Updated 1315 GMT (2115 HKT)
Raffaello D'Andrea isn't short of admirers for his autonomous flying robots and the amazing tricks they perform; from juggling to playing the piano.
October 12, 2012 -- Updated 1402 GMT (2202 HKT)
It sounds like a sci-fi nightmare, but scientists working on the Human Brain Project hope to improve understanding of diseases of the mind.
October 4, 2012 -- Updated 1035 GMT (1835 HKT)
Astrobiologist Charles Cockell says searching for signs of alien life on Earth and in space will help us solve our environmental challenges.
October 2, 2012 -- Updated 1854 GMT (0254 HKT)
Humans have reached the moon, sent rovers to Mars, but the land deep beneath our feet remains largely uncharted. That may be about to change.
March 28, 2012 -- Updated 1033 GMT (1833 HKT)
The world's biggest radio telescope could offer insights into the formation of the universe and might even detect alien life.
March 13, 2012 -- Updated 1102 GMT (1902 HKT)
The U.S. Naval Research Laboratory (NRL) is developing a humanoid robot to tackle naval blazes.
April 9, 2012 -- Updated 1547 GMT (2347 HKT)
New technology is letting scientists map the brain's connections in ever-greater detail.
March 2, 2012 -- Updated 1326 GMT (2126 HKT)
The tiny $35 Raspberry Pi has gone on sale. Designers hope the mini-PC will inspire children to learn about computer programming.
September 24, 2011 -- Updated 1908 GMT (0308 HKT)
Prototype system of wheel-mounted LED lights make a bike far more visible from the front, back and the side, say creators.
Today's five most popular stories